동국대학교 핀테크블록체인학과
버튼
d_navi45
 
교수진
home > 학과소개 > 교수진

본문

손영두 교수
ㆍ02-2260-3840
ㆍyoungdoo@dongguk.edu
ㆍ원흥관 E435



학력/연구활동

• 서울대학교 공학박사 (산업시스템공학)
• 포항공과대학교 공학석사 (기계산업공학부)
• 포항공과대학교 이학사 (물리학)
• Rutgers University 방문연구원 역임
• 서울대학교 공학연구원 연수연구원 역임

학술 및 대외활동



연구분야

• 데이터사이언스
• 인공지능
• 기계학습
• 딥러닝
• 계산금융

대표논문

Youngdoo Son, Sujee Lee, Saerom Park, and Jaewook Lee*, “Learning representative exemplars using one-class Gaussian process regression”, Pattern Recognition, Vol. 74, pp. 185-197, February 2018. 

 

Youngdoo Son and Jaewook Lee*, “Active Learning Using Transductive Sparse Bayesian Regression”, Information Sciences, Vol. 374, pp. 240-254, December 2016. 

 

Namhyoung Kim, Youngdoo Son, Youngjo Lee, and Jaewook Lee*, “Self-correcting ensemble using a latent consensus model, Applied Soft Computing”, Vol. 47, pp. 262-270, October 2016. 

 

Youngdoo Son, Hyeongmin Byun, and Jaewook Lee*, “Nonparametric Machine Learning Models for Predicting the Credit Default Swaps: An Empirical Study”, Expert Systems with Applications, Vol. 58, pp. 210-220, October 2016. 

 

Saerom Park, Jaewook Lee, and Youngdoo Son*, “Predicting Market Impact Costs Using Nonparametric Machine Learning Models”, PLoS ONE, Vol. 11, No. 2, e0150243, February 2016. 

 

Kyoungok Kim, Youngdoo Son, and Jaewook Lee*, “Voronoi Cell-based Clustering Using a Kernel Support”, IEEE Transactions on Knowledge and Data Engineering, Vol. 27, No. 4, pp. 1146-1156, April 2015. 

 

Youngdoo Son, Dong-jin Noh, and Jaewook Lee*, “Forecasting trends of high-frequency KOSPI200 index data using learning classifiers”, Expert Systems with Applications, Vol. 39, No. 14, pp. 11607-11615, October 2012.